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Abstract. Almost sure convergence rates for linear algorithms hk+1 = hk + 1
kχ (bk − Akhk)

are studied, where χ ∈ (0, 1), {Ak}∞k=1 are symmetric, positive semidefinite random matrices and
{bk}∞k=1 are random vectors. It is shown that nγ |hn − A−1b| → 0 a.s. for the γ ∈ [0, χ), positive

definite A and vector b such that 1
nχ−γ

n∑
k=1

(Ak − A) → 0 and 1
nχ−γ

n∑
k=1

(bk − b) → 0 a.s. When

χ−γ ∈
(
1
2
, 1

)
, these assumptions are implied by the Marcinkiewicz strong law of large numbers, which

allows the {Ak} and {bk} to have heavy-tails, long-range dependence or both. Finally, corroborating
experimental outcomes and decreasing-gain design considerations are provided.
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1. Introduction. Linear stochastic approximation algorithms have found wides-
pread application in parameter estimation, adaptive machine learning, signal process-
ing, econometrics and pattern recognition (see, e.g., [1], [3], [9], [26] and [32]). Con-
sequently, their asymptotic rates of almost sure and rth-mean convergence as well as
invariance and large deviation principles are of utmost importance (see e.g., [6], [11],
[17], [18], [21], [22], [24], [34] and [36]). For motivation, suppose {xk, k = 1, 2, · · ·} and
{yk, k = 2, 3, · · ·} are second order Rd− and R−valued stochastic processes, defined
on some probability space (Ω,F , P ), that satisfy

yk+1 = xT
k h+ ϵk, ∀k = 1, 2, . . . ,(1)

where h is an unknown d-dimensional parameter or weight vector of interest and ϵk is a
noise sequence. One often wants to find the value of h that minimizes the mean-square
error h → E|yk+1−xT

k h|2. This best h is given by h = A−1b, where A = E(xkx
T
k ) and

b = E(yk+1xk), assuming the expectations exist, wide-sense stationarity conditions
and that A is positive definite. However, we often do not know the joint distribution
of (xk, yk+1) nor have the necessary stationarity but instead estimate h using a linear
algorithm of the form:

hk+1 = hk + µk(bk −Akhk),(2)

where µk is the kth step size (often of the form µk = k−χ for some χ ∈
(
1
2 , 1
]
) and

Ak =
1

N

k∑
l=max{k−N+1,1}

xlx
T
l , and bk =

1

N

k∑
l=max{k−N+1,1}

yl+1xl(3)

for some N ∈ N, are random sequences of symmetric, positive-semi-definite matri-
ces and vectors respectively. Most often N = 1 so Ak = xkx

T
k and bk = yk+1xk.

More information on stochastic approximation can be found in e.g. [5], [8], [10], [13],
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[17], [25], [30] and [37], which provide examples and motivation for our work. How-
ever, our work is easily differentiated from these. Delyon [8], for example, focuses on
non-linear stochastic approximation algorithms, treating linear examples the same as
non-linear ones. (In Section 4.2.2 he uses linear algorithm approximation but with a
constant deterministic matrix Ak = A in our notation.) Delyon’s work handles im-
portant applications. However, his A-stable and (A, B) Conditions are usually harder
to verify than our Marcinkiewicz Strong Law of Large Numbers (MSLLN) condi-
tions (given below) in the (unbounded, random Ak) linear case, he does not supply
almost sure rates of convergence, his theorems are geared to martingale-increment-
plus-decreasing-perturbation noise and he often assumes fourth order moments. We
are motivated by (but not restricted to) the common setting where XT

k = (xT
k , yk+1)

is a (multivariate) linear process

Xk =
∞∑

l=−∞

Ck−lΞl.(4)

Matrix sequence (Cl) can decay slowly enough (as |l| → ∞) for long-range dependence
(LRD) while {Ξl} can have heavy tails (HT), so E|bk|2 = ∞ and/or E|Ak|2 = ∞.
Even in the lighter tail, short-range dependence case our two-sided linear process ex-
ample {xk} is not a martingale. Moreover; long-range dependence and heavy tails;
exhibited in many network [19], financial and paleoclimatic data sets for example;
voids the usual mixing and moment conditions. We focus on one-step versus Polyak-
Ruppert’s two-step averaging algorithms but handle heavy tails and long range depen-
dence, deriving a surprising decoupling. This means that the optimal convergence rate
of (2) is affected by either the heavy tails or the long-range dependence, whichever is
worse, but not both. This contrasts the rate for partial sums of long-range dependent,
heavily-tailed random variables, which is degraded twice (see e.g. Theorem 6).

Step size µk has a direct effect on the convergence rate and algorithm effectiveness
(see, e.g [12], [15] and references cited therein). Consider the extreme cases. In the
homogeneous, deterministic setting, i.e. Ak = A and bk = b, (2) can solve the
linear equation Ah = b when matrix inversion of A is ill-conditioned. In this case,
a constant gain µk = ϵ is best: Since b = Ah, we have hk+1 = hk − ϵA(hk − h),
so hn − h = (I − ϵA)n−1(h1 − h) and hn → h geometrically, provided ϵ is small
enough that the eigenvalues of I − ϵA are within the unit disc. Conversely, in the
presence of persistent noise, decreasing step sizes are required for the convergence
hn → h. Existing results show that the best possible almost-sure rate of convergence

is |hn − h| = O
(√

n−1 log log(n)
)
, implied by the law of the iterated logarithm,

and that this rate is only attainable when µk = 1
k , second moments of Ak, bk exist

and there is no long-range dependence. (These claims follow from the almost-sure
invariance principle in Kouritzin [22].)

Herein, we handle all gains, long range dependence and heavy tails, addressing
the optimal rate of convergence by establishing results akin to the MSLLN, namely
nγ |hn − h| → 0 a.s. (i.e. |hn − h| = o(n−γ)), for all γ < γ0(χ)

.
= χ−M . M is called

the Marcinkiewicz threshold in the sequel and is defined by

M
.
= inf

{
1

m
: lim
n→∞

1

n
1
m

n∑
k=1

(Ak −A) = 0, lim
n→∞

1

n
1
m

n∑
k=1

(bk − b) = 0 a.s.

}
.(5)

Usually, we expect M ∈ ( 12 , 1], due to Strong Law of Large Numbers and Central
Limit Theorem in the light-tail, short-range-dependence case but when there is LRD
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and/or HT M generally cannot approach 1
2 . When {(xT

k , yk+1)
T : k ∈ Z} is a linear

process as in (4), it is shown in [20] that M = 1
α ∨ (2− 2σ) with α

.
= sup{a ≤

2 : sup
t≥0

taP (|Ξ1|2 > t) < ∞} and σ
.
= sup{s ∈ ( 12 , 1] : sup

l
|l|s∥Cl∥ < ∞}. Hence,

γ < γ0(χ)
.
= (χ − 1

α ) ∧ (χ + 2σ − 2). Here, α ∈ (1, 2] is a heavy-tail parameter with
α = 2 indicating non-heavy tails and σ ∈

(
1
2 , 1
]
is a long-range dependence parameter

with σ = 1 indicating the minimal amount of long-range dependence.
In classical applications the best theoretical convergence rate is attained when

χ = 1 corresponding to γ0(χ) =
1
2 . However, this rate knowledge can lead to erroneous

conclusions as the algorithm often performs better with µk = k−χ for some χ < 1 or
even constant gain (see [23]) than with µk = 1

k . How might one explain this apparent
paradox? First of all, these simple rate-of-convergence results do not account for the

possibility of exploding constants, i.e. if h
(χ)
k denotes the solution of the algorithm (2)

with µk = k−χ, then |hn(χ)− h| = Dχn−γ(χ) for all γ(χ) < γ0(χ). However, this Dχ

often increases rapidly as χ ↗ 1 so the observed convergence may be fastest for some
χ < 1. Secondly, a higher value of χ is worse for forgetting a poor initial guess h0 of h
since you move further and further from the geometric convergence mentioned above
as χ → 1.

Our approach is to transfer the MSLLN from the partial sums of a linear algo-
rithm’s coefficients to its solution. In other words, we establish the almost sure rates
of convergence nγ |hn − h| → 0 a.s., for the algorithm

hk+1 = hk +
1

kχ
(bk −Akhk) ∀ k = 1, 2, 3, ...(6)

with χ ∈ (0, 1), assuming only

lim
n→∞

1

nχ

n∑
k=1

(Ak −A) = 0 and lim
n→∞

1

nχ−γ

n∑
k=1

(bk −Akh) = 0 a.s.(7)

for some γ ∈ [0, χ), which can be implied by e.g.

lim
n→∞

1

nχ−γ

n∑
k=1

(Ak −A) = 0 and lim
n→∞

1

nχ−γ

n∑
k=1

(bk − b) = 0 a.s.,(8)

where Ah = b. When χ− γ ∈ ( 12 , 1], these conditions can be verified by the MSLLN
under a variety of conditions, which we study using the specific structure of Ak and
bk in Section 4.

In addition to rates of convergence, our results show that convergence (hk → h)
in (6) takes place provided that χ ∈ (M, 1). All this suggests that more quickly
decreasing gains like µk = 1

kχ with χ near 1 should be used in very heavy-tailed
or long-range dependent settings. Conversely, slowly deceasing gains like µ = 1

kχ

with smaller χ might work well in lighter-tailed, short-range-dependent situations.

Our simulations in Section 5 show that the smallest normalized error, |hn−h|
|h1−h| , usually

occurs for χ ∈ (M, 1] and the most commonly used choice χ = 1 is most appropriate
in very heavy-tailed or long-range-dependent settings (where M is close to 1) or very
long runs. In other words, a slower decreasing gain usually gets you close to the true
parameters h more quickly unless the coefficients have a high probability of differing
significantly from their means.

Let us consider what is new in terms of our theoretical results. The idea of
inferring convergence and rates of convergence results for linear algorithms (2) from
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like convergence and rates of convergence of its coefficients is not new. Indeed, it
dates back at least to work done by one of the authors in 1994 and 1996 (see [21],
[22] and [24]). The result [24] considered relatively general gain µk and achieved
optimal rates of rth-mean convergence. It has been proved in [22] that the solution
of the linear algorithm (2) satisfies an almost sure invariance principle with respect
to a limiting Gaussian process when µk = 1

k and each Ak is symmetric under the
minimal condition that the coefficients satisfy such an a.s. invariance principle. One
could then immediately transfer functional laws of the iterated logarithm from the
limiting Gaussian process back to the solution of the linear algorithm. Again assuming
the “usual” conditions of Ak symmetry and µk = 1

k , Kouritzin [21] showed that the
solution of the linear algorithm converges almost surely given that the coefficients
do. While this result does not state rates of convergence, our current work in going
from Proposition 10 to Theorem 1 within shows that almost-sure rate of convergence
sometimes follow from convergence results for linear algorithms as a simple corollary.

There were many results (see, e.g. [13], [14] and [16]) that preceded those men-
tioned above and gave convergence or rates of convergence for linear algorithms.
However, these results assumed a specific dependency structure and, thereby, were
not generally applicable. More recently, some authors, e.g. [6], [8] and [34], have
followed the path of transferring convergence and rates of convergence from partial
sums of (the coefficient) random variables to the solutions of linear equations. Specif-
ically, Tadić [34] transferred almost-sure rates of convergence, including those of the
law-of-the-iterated-logarithm rate, from the coefficients to the linear algorithm in
the non-symmetric-Ak, general-gain case. He does not develop a law of the iterated
logarithm where one characterizes the limit points nor does he consider functional
versions. Moreover, he imposes one of two sets of conditions (A and B in his nota-
tion). Conditions B ensure the gain µk ≈ 1

k , so these results should be compared
to prior results in [4] and [22], which imply stronger Strassen-type functional laws of
the iterated logarithm. Tadić does not give any examples verifying his Conditions A
where lessor rates are obtained.

It seems that we are the first to consider processes that are simultaneously heavy-
tailed and long-range dependent in stochastic approximation.

The rest of this paper is organized as follows. A motivational example is given
next. The main theorems are formulated in Section 3. Then, Section 4 includes some
background about the Marcinkiewicz Strong Law of Large Numbers for Partial Sums
and a new MSLLN result for outer products of multivariate linear processes with
LRD and HT. Experimental results are given in Section 5 and proof of main result
(Theorem 1) is delayed until Section 6.

2. Example: Asymptotic Linear Observers by Adaptive Filtering. We
refer to books Kushner and Yin [25], Ljung [27] and Soderstrom and Stoica [31]
for standard vital applications in system identification, equalization, estimation, and
adaptive control in stochastic systems. Rather than repeating these developments
here, we just adapt a less-discussed, yet interesting application from Thanh, Yin and
Wang [35]. They analyzed the convergence of double-indexed or triangular-array pro-
cesses with mixing driving noises and random weights and established Marcinkiewicz
Strong laws of large numbers and convergence rates for such problems (see Theorem
8 herein).

For motivation,Thanh, Yin and Wang considered the least square estimate of
internal state of a multi-input-single-output linear-time-invariant system and showed
that the estimation error is a special case of triangular-array processes with random
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weights and mixing driving noise. Alternatively to least squares, the internal states
of linear observers can be estimated through adaptive filtering algorithms.

Consider the following linear time-invariant system operating near steady state

{
Ẋ(t) = AX(t) +Bu(t),
Y (t) = CX(t),

(9)

where A ∈ Rm0×m0 , B ∈ Rm0×m1 and C ∈ R1×m0 are known system matrices. We
are interested about estimating the state X(t). However, since we are operating near
steady state X(t) ≈ h for some unknown h. X(t), i.e. h, must be estimated through
output Y . Y (t) is measured only at a sequence of irregular (i.e. random) sampling
time instants {tk} with measured values yk+1 corrupted by correlated noise {dk}:

yk+1 = Y (tk) + dk.(10)

(Irregular sampling time sequences Y (tk) are sometimes generated actively by input
control or threshold adaptation under binary-valued sensors, or passively due to event-
triggered sampling or low-resolution signal quantization.) The goal is to estimate the
state X(t) from information on the control input u(t), {tk}, and {yk+1}, all of which
are known or learnt in real time. The internal state in (9) satisfies

X(tk+1) = eA(tk+1−tk)X(tk) +

∫ tk+1

tk

eA(tk+1−τ)Bu(τ)dτ,(11)

which we can not observe. Rather, we get access to the observations at the sampling
time sequence {tk, k = 1, ..., n}

yk+1 = CeA(tk+1−tk)X(tk) + C

∫ tk+1

tk

eA(tk+1−τ)Bu(τ)dτ + dk

= xkh+ νk + dk,(12)

where xk = CeA(tk+1−tk) and νk = C
∫ tk+1

tk
eA(tk+1−τ)Bu(τ)dτ can be built in real time

from known system matrices and the observed sampling times. Letting ϵk = dk + νk,
we find (12) is the same as (1). Hence, the stochastic approximation algorithm can
be used to recursively find the value of h that minimizes the mean-square error h →
E|yk+1 − xT

k h|2. h gives us the estimate of internal state of multi-input-single-output
linear-time-invariant system X. In addition, if the estimated steady state h agrees
with the calculated steady state value of X from the model itself, this supports the
model and choice of system matrices.

If X were not close to steady state initially but the variation of X(tk) is rarely
large between consecutive samples, then one should use a constant gain adaptive
algorithm (as in Kouritzin [23]) to start and then switch to the type considered herein
once close to steady state.

3. Notation and Theoretical Result. In this section, we define our notation
and provide our results.
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|x| is Euclidean distance of some Rd-vector x.
∥C∥ is sup|x|=1 |Cx| for any Rn×m-matrix C.

||| A |||2
∑d

n=1

∑d
o=1(A

(n,o))2.
A(n,o) is the (n, o)th components of A ∈ Rd×d.
⌊t⌋ is max{i ∈ N0 : i ≤ t}for any t ≥ 0.
⌈t⌉ is min{i ∈ N0 : i ≥ t} for any t ≥ 0.

ai,k
i
≪ bi,k means ∀k, ∃ck > 0 not depending on i s.t. |ai,k| ≤ ck|bi,k| ∀i, k.

q∏
l=p

Bl is BqBq−1 · · ·Bp if q ≥ p or I if p > q, ∀Bl ∈ Rd×d.

a ∨ b is max{a, b}.
a ∧ b is min{a, b}.

3.1. Main Results. We will prove our results in a completely deterministic
manner and then apply these results to each path. Therefore, we assume that χ ∈
(0, 1), d is a positive integer, {Āk}∞k=1 is a symmetric, positive semidefinite Rd×d -
valued sequence, {b̄k}∞k=1 is a Rd-valued sequence and {h̄k}∞k=1 is a Rd-valued sequence
satisfying:

h̄k+1 = h̄k +
1

kχ
(b̄k − Ākh̄k) for all k = 1, 2, ...(13)

Our first main result establishes rates of convergence:
Theorem 1. Let γ ∈ [0, χ), h ∈ Rd and A be symmetric and positive-definite.

a) If

lim
n→∞

∥∥∥∥∥ 1

nχ

n∑
k=1

(Āk −A)

∥∥∥∥∥ = 0, and lim
n→∞

∣∣∣∣∣ 1

nχ−γ

n∑
k=1

(b̄k − Ākh)

∣∣∣∣∣ = 0,(14)

then nγ |h̄n − h| → 0 a.s. as n → ∞.

b) Conversely, lim
n→∞

∣∣∣∣∣ 1nχ

n∑
k=1

(b̄k − Ākh)

∣∣∣∣∣ = 0, if lim
k→∞

∣∣k1−χ(h̄k − h)
∣∣ = 0 and

1

nχ

n∑
k=1

kχ−1
∥∥Āk

∥∥ is bounded in n.(15)

Now we state the almost sure version of the above theorem as the following corollary:
Corollary 2. Let γ ∈ [0, χ), h ∈ Rd and A be symmetric and positive-definite.

a) If

lim
n→∞

∥∥∥∥∥ 1

nχ

n∑
k=1

(Ak −A)

∥∥∥∥∥ = 0 a.s. and lim
n→∞

∣∣∣∣∣ 1

nχ−γ

n∑
k=1

(bk −Akh)

∣∣∣∣∣ = 0 a.s.,(16)

then nγ |hn − h| → 0 a.s. as n → ∞.

b) Conversely, lim
n→∞

∣∣∣∣∣ 1nχ

n∑
k=1

(bk −Akh)

∣∣∣∣∣ = 0 a.s., if lim
k→∞

∣∣k1−χ(hk − h)
∣∣ = 0 a.s. and

1

nχ

n∑
k=1

kχ−1 ∥Ak∥ is bounded in n almost surely.
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Proof. a) Fix ω such that (16) is true, recall (6); set Āk = Ak(ω), b̄k = bk(ω) and
h̄k = hk(ω) for all k; and apply Theorem 1. b) is similar. �

Corollary 2 implies hn(ω), the solution of (2), converges to h = A−1b a.s.

Remark 1. Lemma 11 of Appendix establishes that the first equation of (14)
implies (15).

Indeed, to establish the rate of convergence nγ |h̄n − h| → 0 a.s., one need only
check standard conditions for the MSLLN in (16), which is less onerous task than
checking the technical conditions in Corollary 1 or Corollary 3 in [34] say. Indeed,
there appears to be a need for some extra stability in [34] by the imposition that “the
real parts of the eigenvalues of A should be strictly less than a certain negative value
depending on the asymptotic properties of {γn} and {δn}”. We do not need any such
extra condition.

Generally, we do not know h when using stochastic approximation so we cannot
just verify second condition in (14) (or (16)) but rather use the following corollary
instead of Theorem 1 (or Corollary 2).

Corollary 3. Suppose γ ∈ [0, χ) and A is a symmetric positive-definite matrix.

1

nχ−γ

n∑
k=1

(b̄k − b) → 0 and
1

nχ−γ

n∑
k=1

(Āk −A) → 0 a.s.(17)

Then, nγ |h̄n − h| → 0 a.s. as n → ∞.

Finally, we give a version of the theorem for linear processes under very general
and verifiable conditions.

Theorem 4. Let {Ξl} be i.i.d. zero-mean random Rm-vectors such that

sup
t≥0

tαP (|Ξ1|2 > t) < ∞ for some α ∈ (1, 2)

(Cl)l∈Z be R(d+1)×m-matrices such that sup
l∈Z

|l|σ∥Cl∥ < ∞ for someσ ∈
(
1
2 , 1
]
,

(xT
k , yk+1)

T =

∞∑
l=−∞

Ck−lΞl,

Ak = xkx
T
k , bk = yk+1xk and A = E[xkx

T
k ] and b = E[yk+1xk].

Then, nγ |h̄n−h| → 0 a.s. as n → ∞ a.s. for any γ < γ0(χ)
.
= (χ− 1

α )∧ (χ+2σ−2).

Remark 2. Theorem 4 follows from Corollary 3 and Theorem 9 (to follow),

by letting 1
p = χ − γ and X

T

k = XT
k = (xT

k , yk+1) and correspondingly, Ξl = Ξl,

Cl = Cl and σ = σ. σ and α are long-range dependence and heavy-tail parameters,
respectively. Theorem 9 also appears in [20, Theorem 4].

Remark 3. sup
l∈Z

|l|σ′′∥Cl∥ < ∞ for some σ′′ > 1 would be the (normal) short-

range dependence and this clearly implies our weaker sup
l∈Z

|l|σ∥Cl∥ < ∞ condition

for some σ ∈
(
1
2 , 1
]
, which allows for long-range dependence. Our tail condition

sup
t≥0

tαP (|Ξ1|2 > t) < ∞ is implied by the moment condition E|Ξ1|2α < ∞. However,

it too is general enough to allow non-standard (heavy-tailed) {Ak}∞k=1, {bk}∞k=1, since
α < 2 corresponds to moments less than 2 for Ak and bk.
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4. Marcinkiewicz Strong Law of Large Numbers for Partial Sums. Our
basic assumptions are MSLLN for random variables for {Ak} and {bk}. (Technically,
our assumptions are even more general as they allow the non-MSLLN case where
χ−γ ≤ 1

2 that could be verified by some other method in some special situations.) The
beauty of this MSLLN assumption is that: 1) It is minimal in the sense that the linear

algorithm with Ak = I and µk = 1
k reduces to the partial sums hk+1−h = 1

k

k∑
j=1

(bj−b)

(since h = b when A = I) so a rate of convergence in the algorithm solution hk implies
a MSLLN for random variables {bj}. 2) MSLLNs hold under very general conditions,
including heavily-tailed and long-range dependent data. Hence, we review some of
the literature in this area before giving simulation results for our theoretical work.

The classical independent case, due to Marcinkiewicz, is generalized slightly by
Rio [29]:

Theorem 5. Let {Xi} be an m-dependent, identically distributed sequence of
zero-mean R-valued random variables such that E|X1|p < ∞ for some p ∈ (1, 2).
Then,

1

n
1
p

n∑
i=1

Xi → 0 a.s.

Actually, Rio gives a more general m-dependent result on page 922 of his work.
However, the important observation for us is that only the pth moment need be
finite rather than a higher moment as is typical under some stronger dependence
assumptions. Theorem 5 is quite useful in verifying our conditions when {Ak} and
{bk} may have heavily-tailed distributions but are independent or m-dependent. For
example, if χ−γ ∈

(
1
2 , 1
)
and the {Ak} and {bk} are defined as in (3) in terms of i.i.d.

{xk} and {yk} with E|x1|
2

χ−γ < ∞, E|y1|
2

χ−γ < ∞, then {Ak}k≥M and {bk}k≥M are
identically distributed, M -dependent and

1

nχ−γ

n∑
k=1

(Ak −A) → 0 and
1

nχ−γ

n∑
k=1

(bk − b) → 0

a.s., where A = EAk and b = Ebk, by applying Theorem 5 for each component.
Hence, (8) holds.

There are many other important results that include heavy-tails, long-range de-
pendence or both. For example, Louhchi and Soulier [28] give the following result for
linear symmetric α-stable (SαS) processes.

Theorem 6. Let {ζj}j∈Z be i.i.d. sequence of SαS random variables with 1 <
α < 2 and {cj}j∈Z be a bounded collection such that

∑
j∈Z

|cj |s < ∞ for some s ∈ [1, α).

Set Xk =
∑
j∈Z

ck−jζj . Then, for p ∈ (1, 2) satisfying 1
p > 1− 1

s + 1
α

1

n
1
p

n∑
i=1

Xi → 0 a.s.

The condition s < α ensures
∑
j∈Z

|cj |α < ∞ and thereby convergence of
∑
j∈Z

ck−jζj .

Moreover, {Xk} not only exhibits heavy tails but also long-range dependence if, for
example, cj = |j|−σ for j ̸= 0 and some σ ∈

(
1
2 , 1
)
. Notice there is interactions be-

tween the heavy tail condition and the long range dependent condition. In particular
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for a given p, heavier tails (α becomes smaller) implies that you cannot have as long
range dependence (s becomes smaller) and vice versa. Moreover, this result is difficult
to apply in the stochastic approximation setting. For example, if wanted to apply it
for Xk = Ak in the scalar case, then we would need xk such that x2

k = Ak which is
impossible when Ak is SαS.

One nice feature of mixing assumptions is that they usually transfer from random
variables to functions (like squares) of random variables. There are many mixing
results that handle long range dependence. For example, Berbee [2] gives a nice β-
mixing result. However, strong mixing is one of the most general types of mixing that
is more easily verified in practice. Hence, we will quote the following strong mixing
result from Rio [29] (Theorem 1) in terms of the inverse α−1(u) = sup{t ∈ R+ : α⌊t⌋ >
u} of the strong mixing coefficients

αn = sup
k∈Z

sup
A∈σ(Xi,i≤k−n),B∈σ(Xk)

|P (AB)− P (A)P (B)|

and the complementary quantile function

QX(u) = sup{t ∈ R+ : P (|X| > t) > u}.

Theorem 7. Let {Xi} be an identically-distributed zero-mean sequence of R-
valued random variables such that

∫ 1

0
[α−1(t/2)]p−1Qp

X(t)dt < ∞ for some p ∈ (1, 2).
Then,

1

n
1
p

n∑
i=1

Xi → 0 a.s.

Notice again that for a given p, heavier tails implies that you cannot have as long range
dependence and vice versa: If you wanted to maintain the same value of the integral
condition and there became more area under P (|X| > t), then there would be more

area under Qp
X(t) so the area under [α−1(t/2)]p−1, which is equal to 2

∞∑
n=0

αp−1
n , would

have to decrease to compensate. Also, there can be difficulty in establishing that a
given model satisfies the strong mixing condition with the required decay of mixing
coefficients. Still, this is an important result for verifying our basic assumptions.

Another result in mixing area is given by Thanh, Yin and Wang [35, Theorem
3.11], whom considered MSLLN for double indexed and randomly weighted sums of
mixing processes. Generally, they considered ρ∗-mixing types, which is defined as
follows.

On the probability space (Ω,F , P ), let A and B be two sub-σ-algebras of F .
We denote by L2(A) the space of all square integrable and A-measurable random
variables. The maximal coefficient of correlation is defined by

ρ(A,B) = sup
f∈L2(A),g∈L2(B)

|corr(f, g)|.

Let {Xn, n ≥ 1} be a sequence of random variables. For a subset S of N =
{1, 2, ...}, σ(S) means the σ-field generated by {Xn, n ∈ S}. For n ≥ 1, define
ρ∗n

.
= ρ∗(X,n)

.
= sup ρ(σ(S), σ(T )), where the supremum is taken over all pairs of

nonempty finite sets S, T of N such that dist(S, T ) = inf
s∈S,t∈T

|s − t| ≥ n. The

sequence {Xn, n ≥ 1} is said to be ρ∗-mixing if ρ∗n → 0 as n → ∞.
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Theorem 8. Let 0 ≤ r < 1, and let N be a positive integer. Let 1 ≤ p < 2,
and let {Xn, n ≥ 1} be a sequence of mean zero strictly stationary random variables
such that ρ∗(X,N) ≤ r. Suppose that {Ani, n ≥ 1, 1 ≤ i ≤ n} is an array of random
variables such that, for each n ≥ 1, the sequence An = {Ani, 1 ≤ i ≤ n} satisfies
ρ∗(An, N) ≤ r, and

n∑
i=1

E(|Ani|q) = O(n) for some q >
2p

2− p
.(18)

If E|X1|2p < ∞, and {Ani, n ≥ 1, 1 ≤ i ≤ n} is independent of {Xi, i ≥ 1}, then

lim
n→∞

1

n
1
p

n∑
i=1

AniXi = 0 a.s.(19)

Notice that the above Theorem looked at the the moments of Ani and Xi sepa-
rately. However, if we look at the moment of products, we find by Hölder’s inequality

that E|AniXi|
2p

3−p < ∞ and 2p
3−p ∈ [1, 4), so some heavy-tail situations are allowed.

However, the ρ∗-mixing condition does not allow long-range dependence situations,
since

∞∑
k=1

E[X1Xk] =
∞∑
j=0

N∑
k=1

E[X1XjN+k] ≤ N
∞∑
j=0

rj < ∞.

A new MSLLN for outer products of multivariate linear processes with long range
dependence and heavy tails is studied in [20]. A new decoupling property is proved
that shows the convergence rate is determined by the worst of the heavy tails or
the long range dependence, but not the combination. This result used to obtain
Marcinkiewicz Strong Law of Large Numbers for stochastic approximation (Theorem
4). The result is as follow.

Theorem 9. Let {Ξl} and
{
Ξl

}
be i.i.d. zero mean random Rm-vectors such

that Ξl =
(
ξ
(1)
l , ..., ξ

(m)
l

)
, Ξl =

(
ξ
(1)

l , ..., ξ
(m)

l

)
, E[|Ξ1|2] < ∞, E[|Ξ1|2] < ∞ and

max
1≤i,j≤m

sup
t≥0

tαP (|ξ(i)1 ξ
(j)

1 | > t) < ∞ for some α ∈ (1, 2). Moreover, suppose matrix

sequences (Cl)l∈Z, (Cl)l∈Z ∈ R(d+1)×m satisfy

sup
l∈Z

|l|σ∥Cl∥ < ∞, sup
l∈Z

|l|σ∥Cl∥ < ∞ for some (σ, σ) ∈
(
1

2
, 1

]
,

Xk, Xk take form of (4), Dk = XkX
T

k and D = E[X1X
T

1 ]. Then, for p satisfying
p < 1

2−σ−σ ∧ α

lim
n→∞

1

n
1
p

n∑
k=1

(Dk −D) = 0 a.s.

Remark 4. This theorem actually shows the MSLLN for Dk − E[Dk], where

Dk =

(
xkx

T
k yk+1xk

yk+1x
T
k y2k+1

)
, which is more than required, so we can throw out

the unneeded columns.
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5. Experimental Results. In this section we now verify our results of the
previous section experimentally in the stochastic approximation setting discussed in
the introduction. In particular, we use power law or folded t distributions.

Power law distribution: A random variable ξ obeys a power law with param-
eters β > 1 and xmin > 0, written ξ ∼ PL(xmin, β), if it has density

f(x) =
β − 1

xmin

(
x

xmin

)−β

∀ x ≥ xmin

Note that E|ξ|r =

{
xr
min(

β−1
β−1−r ) r < β − 1

∞ r ≥ β − 1
.

Folded t distribution: A non-negative random variable ξ has a folded t distri-
bution with parameter β > 1, written ξ ∼ Ft(β), if it has density

f(x) =
2Γ(β2 )

Γ(β−1
2 )
√
(β − 1)π

(
1 +

x2

β − 1

)− β
2

∀ x > 0.

Note that E(|ξ|r) exists if and only if r < β − 1.
Experimental results in this section are divided in two parts.

5.1. Heavy-tailed cases. Assume N = 1 in (3), dimension is d = 2 and

{(x(1)
k , x

(2)
k , ϵk)

T , k = 1, 2, ...} are i.i.d. random vectors so linear algorithm (2) re-
duces to:

hk+1 = hk + µk(xkyk+1 − xkx
T
k hk) = hk + µk(xkx

T
k h+ xkϵk − xkx

T
k hk).(20)

For consistency and performance, we always let x
(1)
k , x

(2)
k and ϵk be independent. The

runs are always initialized with h1 = (101, 101)T and, for testing purposes, the optimal
h = (1, 1)T is known.

Example 1. Let x
(1)
k , x

(2)
k ∼ PL(xmin = 1, β) and ϵk = ϵ′k − E(ϵ′k) with ϵ′k ∼

PL(x′
min = 0.01, β). The normalized errors in 100 trial simulations, {h(i)

n }100i=1, are

averaged rh =
1

100

100∑
i=1

|h(i)
n − h|

|h1 − h|
and given in the Table 1 in terms of gain parameter

χ, distributional parameter β and sample size n.

Table 1: Algorithm performance-Power Law

n=100000 n=750000 n=1500000
χ\β 3.5 4 4.5 3.5 4 4.5 3.5 4 4.5
0.6 0.0864 0.0314 0.0169 0.0707 0.0243 0.0115 0.0548 0.0203 0.0099
0.7 0.0525 0.0190 0.0098 0.0487 0.0159 0.0067 0.0457 0.0141 0.0056
0.75 0.0397 0.0151 0.0082 0.0449 0.0137 0.0051 0.0456 0.0114 0.0042
0.8 0.0326 0.0136 0.0105 0.0448 0.0111 0.0038 0.0402 0.0087 0.0031
0.85 0.0314 0.0168 0.0549 0.0398 0.0085 0.0082 0.0324 0.0070 0.0035
0.9 0.0344 0.0719 0.2445 0.0438 0.0118 0.0764 0.0272 0.0079 0.0341
0.95 0.0902 0.3047 0.6631 0.3739 0.0897 0.3068 0.0248 0.0519 0.1963
0.98 0.2226 0.5733 1.0154 0.9219 0.2302 0.5251 0.0374 0.1488 0.3930
1 0.3876 0.8062 0.6631 1.1891 0.3745 0.6925 0.0662 0.2596 0.5644

The Marcinkiewicz threshold, M = 2
(β−1) , corresponding to β = 3.5, β = 4

and β = 4.5 are respectively M = 0.8, 0.67 and 0.57. Our theoretical results prove
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convergence above this threshold. While the results in Table 1 are obviously still
influenced by (heavy-tailed) randomness, one can see that convergence does appear to
be taking place as one moves from n = 100, 000 through n = 750, 000 to n = 1, 500, 000
when χ > M and it is less clear that convergence is taking place when χ < M .
Furthermore, our (as well as prior) theoretical results predict rates of convergence
that increase in χ. Indeed, in the case β = 4 our theoretical results suggest that χ ≈ 1
should result in a rate of convergence n0.33|hn−h| → 0 a.s. while χ = 0.85 should only
result in a rate of convergence n0.18|hn−h| → 0 a.s. Conversely, Table 1 demonstrates
that χ = 0.85 performs better, which seems to contradict the theory. However, this
paradox is explained by the exploding constants discussion of the introduction and, in
fact, points out that more refined theory, involving functional results, is needed. The
proper way to use our theoretical results then is to predict the best χ (lowest value of
rh) in the range of (M, 1] i.e. in (0.8, 1], (0.67, 1] and (0.57, 1], respectively for our
three β’s.

Table 2: Best fixed χ-Power Law

n=100000 n=750000 n=1500000
β 3.5 4 4.5 3.5 4 4.5 3.5 4 4.5

Best χ 0.85 0.8 0.75 0.85 0.85 0.8 0.95 0.85 0.8
Resulting γ 0.05 0.13 0.18 0.05 0.18 0.23 0.15 0.18 0.23

The best χ’s, corresponding to the smallest value of rh for β = 3.5, β = 4 and
β = 4.5 and 3 different sample sizes, as well as the γ corresponding to the theoretical
rate of convergence o(n−γ) are summarized in Table 2. In all cases, the best value for
χ is in the predicted range. As we explained, a faster decreasing gain is appropriate
for a heavier-tailed distribution, which is also confirmed by Table 2. Notice also that
the best χ increases in n, a phenomenon consistent with our exploding constants and
the initial condition effect discussion. Now, we repeat the previous example with
a different distribution. Since the results are consistent with those of the previous
example, we will keep our discussion to a minimum.

Example 2. Let x
(1)
k , x

(2)
k ∼ Ft(β) and ϵk = ϵ′k − E(ϵ′k) with ϵ′k ∼ Ft(β).

The simulation results for three β’s: 3.5, 4 and 4.5 with corresponding Marcinkiewicz
thresholds, M = 2

β−1 , 0.8, 0.67 and 0.57 are given in Table 3 with sample sizes:
n = 50, 000, 100, 000 and 750, 000.

Table 3: Algorithm performance-Folded t

n=50000 n=100000 n=750000
χ\β 3.5 4 4.5 3.5 4 4.5 3.5 4 4.5
0.6 0.0958 0.0345 0.0221 0.0929 0.0336 0.0177 0.0590 0.0195 0.0104
0.7 0.0697 0.0245 0.0138 0.0661 0.0216 0.0112 0.0318 0.0120 0.0064
0.75 0.0599 0.0204 0.0113 0.0556 0.0173 0.0089 0.0336 0.0099 0.0050
0.8 0.0505 0.0172 0.0103 0.0439 0.0140 0.0075 0.0374 0.0076 0.0038
0.85 0.0399 0.0145 0.0098 0.0341 0.0118 0.0063 0.0339 0.0058 0.0029
0.9 0.0312 0.0133 0.0087 0.0278 0.0100 0.0057 0.0265 0.0048 0.0024
0.95 0.0275 0.0241 0.0097 0.0245 0.0089 0.0060 0.0205 0.0039 0.0021
0.98 0.0347 0.0475 0.0212 0.0274 0.0117 0.0121 0.0179 0.00371 0.0032
0.99 0.0404 0.0583 0.0295 0.0310 0.0149 0.0172 0.0173 0.00373 0.0048
1 0.0486 0.0700 0.0413 0.0369 0.0205 0.0249 0.0170 0.0039 0.0077
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A summary of of best χ result is given in Table 4. Again, a smaller β corresponds
to heavier tails and larger best χ. Moreover, as we predicted the best χ for β = 3.5,
β = 4 and β = 4.5 in the range of (0.8, 1], (0.67, 1] and (0.57, 1], respectively. Best
χ’s increase in sample size.

Table 4: Best fixed χ-Folded t

n=50000 n=100000 n=750000
β 3.5 4 4.5 3.5 4 4.5 3.5 4 4.5

Best χ 0.95 0.9 0.9 0.95 0.95 0.9 1 0.98 0.95
γ < 0.15 0.23 0.33 0.15 0.28 0.33 0.2 0.31 0.38

5.2. Combined Heavy-tailed and Long Range dependence case. If we

take N = 1 and dimension d = 1, we have (xk, yk+1) =

∞∑
j=−∞

Ck−jΞj , in which

Cj = (cj , cj)
T and Ξj = (ξ

(1)
j , ξ

(1)
j )j∈Z are i.i.d.. Hence, xk =

∑
j∈Z

ck−jξ
(1)
j and yk+1 =∑

j∈Z
ck−jξ

(2)
j , where ξ

(2)
j = hξ

(1)
j +aj and {aj}’s are i.i.d. zero mean random variables.

This relation between ξ
(1)
j and ξ

(2)
j is due to the fact that yk+1 = xkh + ϵk and

ϵk =
∑
j∈Z

ck−jaj . We consider {cj = |j|−σ}, for j ̸= 0 and σ ∈ ( 12 , 1], c0 = 1. The linear

algorithm (2) reduces to:

hk+1 = hk + µk(xkyk+1 − x2
khk) = hk + µk(x

2
kh+ xkϵk − x2

khk).(21)

The initial and optimal values are h1 = 401 and h = 1.

Example 3. Let ξ
(1)
j ∼ PL(xmin = 0.01, β) and aj = fj − E(fj) with fj ∼

PL(x′
min = 0.01, β). The simulation is done for one-sided process and since in com-

puter we cannot technically do infinite sum, we assume summation over the range of

(0, 500, 000). Similarly, the normalized errors in 100 trial simulations, {h(i)
n }100i=1, are

averaged and results for different χ’s, β’s and sample sizes n are presented in the fol-
lowing tables. The assumed σ is 0.65. The Marcinkiewicz threshold, M = 1

α∨(2−2σ),
corresponding to β = 4, β = 4.5 and β = 5 is 0.7. Hence, predicted ranges for χ’s with
smallest rh will be (0.7, 1]. Simulation results are provided in Table 5 with summary
of best χ in Table 6. It worth noticing that the convergence does not seem to take
place below the Marcinkiewicz threshold and the best χs are in the predicted ranges
and the normalized error decreases as β increases.

Note that by considering σ = 0.65, the minimum of 2−2σ and 1
α for all β = 4, 4.5

and 5 is 2−2σ, hence we do not expect much change in the χ as β changes. In addition,
the rate of convergence for all considered β’s is determined by γ < χ+ 2σ − 2.
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Table 5: Algorithm performance for LRD-HT cases with σ = 0.65

n=100 n=5000 n=10,000
χ\β 4 4.5 5 4 4.5 5 4 4.5 5
0.6 0.010917 0.006166 0.004508 0.013172 0.007826 0.005897 0.012465 0.007359 0.005527

0.7 0.000665 0.000237 0.000132 0.000958 0.000414 0.000262 0.000881 0.000377 0.000238

0.75 2.98e-05 7.88e-06 6.49e-06 9.77e-05 3.15e-05 1.70e-05 8.79e-05 2.83e-05 1.52e-05

0.8 1.02e-05 7.76e-06 6.39e-06 5.19e-06 3.80e-06 3.11e-06 4.72e-06 3.30e-06 2.69e-06

0.85 9.91e-06 7.77e-06 6.41e-06 5.01e-06 3.91e-06 3.21e-06 4.38e-06 3.37e-06 2.76e-06

0.9 9.93e-06 7.79e-06 6.45e-06 5.20e-06 4.12e-06 3.39e-06 4.54e-06 3.50e-06 2.86e-06

0.95 1.00e-05 7.90e-06 6.55e-06 5.63e-06 4.42e-06 3.62e-06 4.73e-06 3.65e-06 2.98e-06

0.98 1.01e-05 7.99e-06 6.61e-06 5.97e-06 4.69e-06 3.86e-06 4.88e-06 3.77e-06 3.08e-06

1 1.02e-05 8.04e-06 6.65e-06 6.28e-06 4.91e-06 4.03e-06 5.02e-06 3.89e-06 3.19e-06

Table 6: Best fixed χ-Power Law, LRD with σ = 0.65

n=100 n=5000 n=10000
β 4 4.5 5 4 4.5 5 4 4.5 5

Best χ 0.85 0.8 0.8 0.85 0.8 0.8 0.85 0.8 0.8
Resulting γ 0.15 0.1 0.1 0.15 0.1 0.1 0.15 0.1 0.1

6. The proof of Theorem 1. Part a) Step 1: Reduce rate of convergence to
convergence of a transformed algorithm.
Letting ηk =

(
k+1
k

)γ − 1, setting gk = kγ
(
h̄k − h

)
and using (13), one finds that

gk+1 = gk +
1

kχ

(
b̂k − Âkgk

)
+ ηkgk,(22)

where

b̂k = (k + 1)γ
(
b̄k − Ākh

)
and Âk =

(
k + 1

k

)γ

Āk.(23)

However, we have by Taylor’s theorem and assumption that

1

nχ

n∑
k=1

ηk∥A∥ ≤ γ

nχ

n∑
k=1

k−1 → 0, as n → ∞.(24)

Step 2: Show MSLLN for new coefficients i.e. 1
nχ

n∑
k=1

(Âk − A) → 0, and

1
nχ

n∑
k=1

b̂k → 0 as n → ∞.

∥∥∥∥∥ 1

nχ

n∑
k=1

(
k + 1

k

)γ (
Āk −A

)
− 2γ

nχ

n∑
k=1

(
Āk −A

)∥∥∥∥∥
=

∥∥∥∥∥∥ 1

nχ

n∑
k=2

k∑
j=2

[(
j + 1

j

)γ

−
(

j

j − 1

)γ] (
Āk −A

)∥∥∥∥∥∥
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≤
n∑

j=2

[(
j

j − 1

)γ

−
(
j + 1

j

)γ]
1

nχ

(∥∥∥∥∥
n∑

k=2

(
Āk −A

)∥∥∥∥∥+
∥∥∥∥∥
j−1∑
k=2

(
Āk −A

)∥∥∥∥∥
)

1

nχ

∥∥∥∥∥
n∑

k=2

(
Āk −A

)∥∥∥∥∥
[
2γ −

(
n+ 1

n

)γ]

+
n∑

j=2

[(
j

j − 1

)γ

−
(
j + 1

j

)γ](
j − 2

n

)χ
1

(j − 2)χ

∥∥∥∥∥
j−1∑
k=2

(
Āk −A

)∥∥∥∥∥
which goes to zero by assumption and the Toeplitz lemma. By Taylor’s theorem∣∣∣∣∣ 1nχ

n∑
k=1

(k + 1)γ
(
b̄k − Ākh

)
− 1

nχ(n+ 1)−γ

n∑
k=1

(
b̄k − Ākh

)∣∣∣∣∣
=

1

nχ

∣∣∣∣∣∣
n−1∑
k=1

n∑
j=k+1

[jγ − (j + 1)
γ
]
(
b̄k − Ākh

)∣∣∣∣∣∣
≤ 1

nχ

n∑
j=2

γjγ−1

∣∣∣∣∣
j−1∑
k=1

(
b̄k − Ākh

)∣∣∣∣∣
≤ γ

nχ

n∑
j=2

jχ−1 1

(j − 1)χ−γ

∣∣∣∣∣
j−1∑
k=1

(
b̄k − Ākh

)∣∣∣∣∣ ,(25)

which goes to zero by the Toeplitz lemma.
Step 3: Convergence of gk, hence the rate of convergence of h̄k follows from the

Proposition 10 with b = 0, ĥk = gk, h = 0 and ηk =
(
k+1
k

)γ − 1. �
Proposition 10. Suppose {Âk}∞k=1 is a symmetric, positive-semidefinite Rd×d-

valued sequence; A is a (symmetric) positive-definite matrix; χ ∈ (0, 1); θ ∈ (χ, 1];
ηk ≤ η̄

kθ ; η̄ > 0 and

ĥk+1 = ĥk +
1

kχ
(b̂k − Âkĥk) + ηkĥk for all k = 1, 2, ...;(26)

1

nχ

n∑
k=1

(b̂k − b) → 0 and
1

nχ

n∑
k=1

(Âk −A) → 0.(27)

Then, ĥn → h
.
= A−1b as n → ∞.

Notation: To ease the notation in the sequel, we will take the product over no
factors to be 1 and the sum of no terms to be 0. For convenience, we let:

νk := ĥk − h, Yk := Âk −A, zk := b̂k − Âkh.(28)

Proof. Step 1: Show simplified algorithm with Ak’s replaced converges.

We note
1

nχ

n∑
k=1

zk → 0 and will show νk → 0, by proving uk → 0 and wk := νk−uk →

0, where

uk+1 =

(
I − A

kχ
+ ηkI

)
uk +

zk
kχ

+ ηkh subject to u1 = ν1.(29)
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By induction, we have:

un =
n−1∏
l=1

(
I − A

lχ
+ ηlI

)
u1 +

n−1∑
j=1

Fj,nzj +
n−1∑
j=1

F̄j,nh for n = 1, 2, ...(30)

where {
Fj,n = 1

jχ

∏n−1
l=j+1

(
I − A

lχ + ηlI
)

F̄j,n = ηjj
χFj,n forj = 1, 2, ..., n− 1, n = 2, 3, ...

(31)

Hence,by (30), (31) and Lemma 12 i, ii)

lim
n→∞

|un| ≤ lim
n→∞

∥∥∥∥∥
n−1∏
l=1

(
I − A

lχ
+ ηlI

)∥∥∥∥∥ |u1|

+ lim
n→∞

∣∣∣∣∣∣
n−1∑
j=1

Fj,nzj

∣∣∣∣∣∣+ lim
n→∞

∣∣∣∣∣∣
n−1∑
j=1

F̄j,nh

∣∣∣∣∣∣ = 0.(32)

Step 2: Transfer stability from A to blocks of Ak.
Define the blocks{

nk = ⌊(ak)
1

1−χ ⌋ := max{i ∈ N0 : i ≤ (ak)
1

1−χ }
Ik = {nk, nk + 1, · · · , nk+1 − 1}

(33)

for k = 0, 1, 2, ... and the block products

Uk =
∏
l∈Ik

(
I − Âl

lχ
+ ηlI

)
andVj,k =

nk+1−1∏
l=j+1

(
I − Âl

lχ
+ ηlI

)
1

jχ
Yj .(34)

For the Uk’s we have

∏
l∈Ik

(
I − Âl

lχ
+ ηlI

)
=I−

∑
l∈Ik

Âl

lχ
+
∑
l∈Ik

ηlI +
∑

l1,l2∈Ik
l1>l2

(
Âl1

lχ1
− ηl1I

)(
Âl2

lχ2
− ηl2I

)

−
∑

l1,l2,l3∈Ik
l1>l2>l3

(
Âl1

lχ1
− ηl1I

)(
Âl2

lχ2
− ηl2I

)(
Âl3

lχ3
− ηl3I

)
+· · · (−1)k

∏
l∈Ik

(
Âl

lχ
− ηlI

)

so

∥Uk∥ ≤

∥∥∥∥∥I −∑
l∈Ik

Âl

lχ

∥∥∥∥∥+∑
l∈Ik

ηl +

∥∥∥∥∥∥∥
∑

l1,l2∈Ik
l1>l2

(
Âl1

lχ1
− ηl1I

)(
Âl2

lχ2
− ηl2I

)∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥
∑

l1,l2,l3∈Ik
l1>l2>l3

(
Âl1

lχ1
− ηl1I

)(
Âl2

lχ2
− ηl2I

)(
Âl3

lχ3
− ηl3I

)∥∥∥∥∥∥∥
+ · · ·+

∏
l∈Ik

∥∥∥∥∥ Âl

lχ
− ηlI

∥∥∥∥∥ .(35)
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However, we know that
∑

j1>j2>···>jk
aj1aj2 · · · ajk ≤ 1

k!

(∑
j aj

)k
for aj ≥ 0 so, it

follows that∑
l1,l2∈Ik
l1>l2

∥∥∥∥∥ Âl1

lχ1
− ηl1I

∥∥∥∥∥
∥∥∥∥∥ Âl2

lχ2
− ηl2I

∥∥∥∥∥
+

∑
l1,l2,l3∈Ik
l1>l2>l3

∥∥∥∥∥ Âl1

lχ1
− ηl1I

∥∥∥∥∥
∥∥∥∥∥ Âl2

lχ2
− ηl2I

∥∥∥∥∥
∥∥∥∥∥ Âl3

lχ3
− ηl3I

∥∥∥∥∥+ · · ·+
∏
l∈Ik

∥∥∥∥∥ Âl

lχ
− ηlI

∥∥∥∥∥

≤
nk+1−nk∑

m=2

(∑
l∈Ik

(
∥Âl∥
lχ + ηl

))m

m!
.

As a result, we find by (35) that

∥Uk∥ ≤

∥∥∥∥∥I −A
∑
l∈Ik

1

lχ

∥∥∥∥∥+
∥∥∥∥∥∑
l∈Ik

Yl

lχ

∥∥∥∥∥+∑
l∈Ik

ηl

+

nk+1−nk∑
m=2

(∑
l∈Ik

(
∥Âl∥
lχ + ηl

))m

m!
.(36)

Now, let λmin and λmax be the smallest and biggest eigenvalues of A and define
a′ = a

1−χ , where a > 0 is chosen small enough that

a′ ≤
{

2

λmin + ∥A∥
,

1

d∥A∥
,

λmin

e1(d∥A∥)2

}
.(37)

Then, by (33) and the fact that

1

1− χ
(n1−χ

k+1 − n1−χ
k ) ≤

∑
l∈Ik

1

lχ
≤ 1

1− χ
((nk+1 − 1)1−χ − (nk − 1)1−χ)

we have limk→∞
(∑

l∈Ik
1
lχ − a′

)
is in the range of(

lim
k→∞

n1−χ
k+1 − n1−χ

k − a

1− χ
, lim

k→∞

n1−χ
k+1 − n1−χ

k − a

1− χ
+

n1−χ
k − (nk − 1)1−χ

1− χ

)

so by Taylor’s theorem

lim
k→∞

∣∣∣∣∣∑
l∈Ik

1

lχ
− a′

∣∣∣∣∣ ≤ lim
k→∞

{
1

1− χ

∣∣∣n1−χ
k+1 − n1−χ

k − a
∣∣∣+ 1

(nk − 1)χ

}
= 0,(38)

which also implies

lim
k→∞

∑
l∈Ik

ηl ≤ η̄ lim
k→∞

nχ−θ
k

∑
l∈Ik

1

lχ
= 0.(39)
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For arbitrary ϵ > 0 one finds some Kϵ > 0 by (38) and (37) such that∥∥∥∥∥I −A
∑
l∈Ik

1

lχ

∥∥∥∥∥ = max

{
∥A∥

∑
l∈Ik

1

lχ
− 1, 1− λmin

∑
l∈Ik

1

lχ

}
≤ 1− λmina

′ + ϵ for all k ≥ Kϵ(40)

Moreover, we can use Lemma 13 of Appendix, (28), (27), (38), (39), Taylor’s theorem
and the fact d∥A∥a′ < 1 and to obtain a K ′

ϵ ≥ Kϵ such that

nk+1−nk∑
m=2

(∑
l∈Ik

(
∥Âl∥
lχ + ηl

))m

m!
≤
nk+1−nk∑

m=2

(
d∥A∥

∑
l∈Ik

1

lχ
+ d∥

∑
l∈Ik

Yl

lχ
∥+

∑
l∈Ik

ηl

)m

m!

≤ e1+3ϵ (d∥A∥a′ + 3ϵ)2

2
for all k ≥ K ′

ϵ(41)

Therefore, by (40), Lemma 12 iii), (36) and (41) one finds

∥Uk∥ ≤

∥∥∥∥∥I −A
∑
l∈Ik

1

lχ

∥∥∥∥∥+∑
l∈Ik

ηl +

∥∥∥∥∥∑
l∈Ik

Yl

lχ

∥∥∥∥∥+
nk+1−nk∑

m=2

(∑
l∈Ik

(
∥Âl∥
lχ

+ ηl

))m

m!

≤ 1− λmina
′ + 3ϵ+ e1+3ϵ (d∥A∥a′ + 3ϵ)2

2
∀ k ≥ K ′

ϵ(42)

Furthermore, using the fact that a′ < λmin

e1(d∥A∥)2 and making for ϵ > 0 small enough,

we find from (42) that, there exists a 0 < γ < 1 and an integer k1 > 0 such that

∥Uk∥ ≤ γ for all k ≥ k1(43)

Step 3: Convergence of remainder wn along a subsequence using block stability of
Ak.
By (26), (28), (30) and wk := νk − uk → 0

wn+1 =

(
I − Ân

nχ
+ ηnI

)
wn − 1

nχ
Ynun for n = 1, 2, · · ·(44)

so it follows by (44) that

wn =

n−1∏
l=nk

(
I − Âl

lχ
+ ηlI

)
wnk

−
n−1∑
j=nk

n−1∏
l=j+1

(
I − Âl

lχ
+ ηlI

)
Yjuj

jχ
∀ n ≥ nk.(45)

In particular,

wnk+1
= Ukwnk

−
∑
j∈Ik

Vj,kuj for k = 0, 1, · · · ,(46)
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where Uk is defined in (34) and

Vj,k =

nk+1−1∏
l=j+1

(
I − Âl

lχ
+ ηlI

)
1

jχ
Yj .(47)

By Lemma 12 v) and (47) we obtain,

∥Vj,k∥ ≤
nk+1−1∏
l=j+1

∥∥∥∥∥
(
I − Âl

lχ
+ ηlI

)∥∥∥∥∥ ∥Yj∥
jχ

≤
∏
l∈Ik

(
1 +

∥Âl∥
lχ

+ ηl

)
∥Yj∥
jχ

j,k
≪ ∥Yj∥

jχ
for j ∈ Ik, k = 0, 1, . . .(48)

Therefore, by (43), (48), (34), (46), and (15) we have

| wnk
|
k
≪ γk−k1 | wnk1

| +
k−1∑
l=k1

γk−l−1
∑
j∈Il

∥A∥+ ∥Âj∥
jχ

| uj | ∀ k ≥ k1.(49)

In addition, ∑
j∈Il

∥A∥+ ∥Âj∥
jχ

| uj |= ∥A∥
∑
j∈Il

1

jχ
| uj | +

∑
j∈Il

∥Âj∥
jχ

| uj |

so using Lemma 12 iv), (32), (38) and finally applying Toeplitz Lemma, we obtain

lim
l→∞

∑
j∈Il

∥A∥+ ∥Âj∥
jχ

| uj |= 0.(50)

Moreover, since

k−1∑
l=k1

γk−l−1 =
1− γk−k1

1− γ

k
≪ 1 for all k = k1, k1 + 1, · · ·(51)

it follows from (49), (50), (51) and the Toeplitz Lemma with al,k = γk−l−11k1≤l≤k−1

and xl =
∑

j∈Il

∥A∥+∥Âj∥
jχ | uj | that

lim
k→∞

| wnk
| ≤ lim

k→∞
γk−k1 | wnk1

|

+ lim
k→∞

k−1∑
l=k1

γk−l−1
∑
j∈Il

∥A∥+ ∥Âj∥
jχ

| uj |= 0.(52)

Step 4: Use wnk
→ 0 to show block convergence maxn∈Ik |wn| → 0.

Now, we return to (45) and find for n ∈ Ik

|wn| ≤
n−1∏
l=nk

(
1 +

∥Âl∥
lχ

+ ηl

)
|wnk

|+
n−1∑
j=nk

n−1∏
l=nk

(
1 +

∥Âl∥
lχ

+ ηl

)
∥Yj∥
jχ

|uj |

≤
∏
l∈Ik

(
1 +

∥Âl∥
lχ

+ ηl

)|wnk
|+

∑
j∈Ik

∥Yj∥
jχ

|uj |


≤
∏
l∈Ik

(
1 +

∥Âl∥
lχ

+ ηl

)|wnk
|+

∑
j∈Ik

∥Âj∥+ ∥A∥
jχ

|uj |

 .(53)



20 M. A. Kouritzin and S. Sadeghi

Finally, by (53), (52), Lemma 12 v), and (50) we obtain

lim
k→∞

max
n∈Ik

| wn |= 0. �(54)

Part b) By (13) and (28), zk = kχ(νk+1 − νk) + Ākνk. Averaging, then reordering
the sum, we have

1

nχ

n∑
k=1

zk =
1

nχ

(
n∑

k=1

kχ(νk+1 − νk) +

n∑
k=1

Ākνk

)

= νn+1 −
1

nχ

n∑
k=1

(kχ − (k − 1)χ)νk +
1

nχ

n∑
k=1

Ākνk

so ∣∣∣∣∣ 1nχ

n∑
k=1

zk

∣∣∣∣∣ ≤ | νn+1 | +
n∑

k=1

kχ − (k − 1)χ)

nχ
| νk |

+

n∑
k=1

kχ−1

nχ
∥Āk∥k1−χ | νk | .(55)

The second and third terms on the RHS of (55) converge to 0 by the Toeplitz lemma

with an,k = kχ−(k−1)χ

nχ , xk = |νk| and with an,k = kχ−1∥Āk∥
nχ , xk = kχ−1|νk| respec-

tively. �
7. Appendix. We first establish our promised comparison on our conditions.

Lemma 11. lim sup
n→∞

∥∥∥∥∥ 1

nχ

n∑
k=1

(Āk −A)

∥∥∥∥∥ = 0 implies
1

nχ

n∑
k=1

kχ−1∥Āk∥ is bounded

in n.

Proof. By Lemma 13 (to follow) and the fact that

n∑
k=1

kχ−1 ≤ nχ

χ
, one finds that

1

nχ

n∑
k=1

kχ−1∥Āk∥ ≤ d

nχ

∥∥∥∥∥
n∑

k=1

kχ−1Āk

∥∥∥∥∥
≤ d

nχ

∥∥∥∥∥
n∑

k=1

kχ−1(Āk −A)

∥∥∥∥∥+ d

nχ
∥A∥

n∑
k=1

kχ−1

≤ d

nχ

∥∥∥∥∥
n∑

k=1

kχ−1(Āk −A)

∥∥∥∥∥+ d∥A∥
χ

.(56)

Noting
k∑

j=2

(jχ−1−(j−1)χ−1)=kχ−1−1, setting C=
d∥A∥
χ

+sup
n

d

nχ

∥∥∥∥∥
n∑

k=1

(Āk −A)

∥∥∥∥∥<∞
and interchanging summation order, we have

1

nχ

n∑
k=1

kχ−1∥Āk∥ ≤ d

nχ

∥∥∥∥∥∥
n∑

k=2

k∑
j=2

(jχ−1 − (j − 1)χ−1)(Āk −A)

∥∥∥∥∥∥+ C

≤ d

nχ

∥∥∥∥∥∥
n∑

j=2

(jχ−1 − (j − 1)χ−1)

n∑
k=j

(Āk −A)

∥∥∥∥∥∥+ C.(57)
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However, by Taylor’s theorem (j1−χ − (j − 1)1−χ) ≤ (1− χ)(j − 1)−χ, so by (57) we
have

1

nχ

n∑
k=1

kχ−1∥Āk∥

≤ d
n∑

j=2

(j1−χ − (j − 1)1−χ)

j1−χ(j − 1)1−χ
· 1

nχ

∥∥∥∥∥∥
n∑

k=j

(Āk −A)

∥∥∥∥∥∥+ C

≤ d

n∑
j=2

(j − 1)−χ(1− χ)

j1−χ(j − 1)1−χ
.

1

nχ

(∥∥∥∥∥
n∑

k=1

(Āk −A)

∥∥∥∥∥+
∥∥∥∥∥
j−1∑
k=1

(Āk −A)

∥∥∥∥∥
)

+ C

≤ 2d(1− χ)
n∑

j=2

1

j2−χ

(∥∥∥∥∥ 1

nχ

n∑
k=1

(Āk −A)

∥∥∥∥∥+
∥∥∥∥∥ 1

(j − 1)χ

j−1∑
k=1

(Āk −A)

∥∥∥∥∥
)

+ C

This final term is bounded by the Toeplitz lemma and our hypothesis. �

We give our list of technical bounds used in the proof of Proposition 10.
Lemma 12. Assume the setting of Proposition 10; and Fj,k, Ik, {zk}∞k=1 and

{Yk}∞k=1 are as defined in (33), (31) and (28). Then, following are true:

i) lim
n→∞

∥∥∥∥∥
n−1∏
l=1

(
I − A

lχ
+ ηlI

)∥∥∥∥∥ = 0

ii) lim
n→∞

∣∣∣∣∣∣
n−1∑
j=1

Fj,nzj

∣∣∣∣∣∣ = 0 and lim
n→∞

∣∣∣∣∣∣
n−1∑
j=1

F̄j,nh

∣∣∣∣∣∣ = 0

iii) lim
k→∞

∥∥∥∥∥∑
l∈Ik

Yl

lχ

∥∥∥∥∥ = 0

iv)
∑
l∈Ik

(
∥Âl∥
lχ

+ ηl

)
k
≪ 1 for all k = 0, 1, · · ·

v)
∏
l∈Ik

(
1 +

∥Âl∥
lχ

+ ηl

)
k
≪ 1 for all k = 0, 1, · · ·

Proof. i) We know
∥∥I − A

lχ + ηlI
∥∥ is the maximum eigenvalue of

(
(1 + ηl)I − A

lχ

)
and

0 ≤

∥∥∥∥∥
n−1∏
l=1

(
(1 + ηl)I −

A

lχ

)∥∥∥∥∥ ≤
n−1∏
l=1

∥∥∥∥(1 + ηl)I −
A

lχ

∥∥∥∥ .
Let λmin > 0 be the minimum eigenvalue of A; recall from the statement of Proposi-
tion 10 that ηk ≤ η̄

kθ and θ < χ; and fix l∗ large enough that: 1+ηl− λmin

lχ > 0 ∀ l > l∗.

Using the fact that
∏
l

(1 + xl) ≤ exp

(∑
l

xl

)
, one finds

n−1∏
l=l∗

∥∥∥∥(1 + ηl)I −
A

lχ

∥∥∥∥ ≤
n−1∏
l=l∗

(
1 +

η̄

lθ
− λmin

lχ

)

≤ exp

(∫ n−1

l∗−1

η̄

xθ
dx−

∫ n

l∗

λmin

xχ
dx

)
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≤ exp

(
D +

η̄

1− θ
(n− 1)1−θ − λmin

1− χ
n1−χ

)
n
≪ exp

(
−λmin

2− 2χ
n1−χ

)
for some D ∈ R. Hence,

n−1∏
l=l∗

∥∥∥∥(1 + ηl)I −
A

lχ

∥∥∥∥→ 0 as n → ∞.(58)

ii) ∥(rχ+ ηrr
χ− (r− 1)χ)I−A∥ ≤| (rχ− (r− 1)χ) | +η̄rχ−θ +∥A∥ ≤ 1+ η̄+ ∥A∥

is upper bounded ∀r > 1 since χ ∈ (0, 1). Hence, by (31) we have

∥Fr−1,n − Fr,n∥ =

∥∥∥∥∥
n−1∏

l=r+1

(
(1 + ηl)I −

A

lχ

)[
1

(r − 1)χ

(
(1 + ηr)I −

A

rχ

)
− 1

rχ
I

]∥∥∥∥∥
≤

∥∥∥∥∥
n−1∏

l=r+1

(
(1 + ηl)I −

A

lχ

)∥∥∥∥∥ 1

rχ(r − 1)χ

× ∥(rχ + ηrr
χ − (r − 1)χ)I −A∥

r,n
≪ 1

rχ(r − 1)χ

∥∥∥∥∥
n−1∏

l=r+1

(
(1 + ηl)I −

A

lχ

)∥∥∥∥∥(59)

for all r = 2, 3, ..., n − 1, n = 3, 4, .... Letting λ denote an arbitrary eigenvalue of
A, setting Lc =

{
l : λ

lχ − 1− ηl ≥ c
}
, noting that

∥∥(1 + ηl − λ
lχ

)
I
∥∥ ≤

(
λ
lχ − 1− ηl

)
∨

exp
(
ηl − λ

lχ

)
and defining constant C=̇

∏
l∈L1

(
λ
lχ − 1− ηl

)
× exp

(∑
l∈L0

λ
lχ − ηl

)
we

have that∥∥∥∥∥
n−1∏

l=r+1

(
1 + ηl −

λ

lχ

)
I

∥∥∥∥∥ ≤
∏
l∈L1

(
λ

lχ
− 1− ηl

)
× exp

 n−1∑
l=r+1,l ̸∈L0

ηl −
λ

lχ


≤ C exp

(
n−1∑

l=r+1

η̄

lθ
− λ

lχ

)
r,n
≪ exp

(
− λmin

2− 2χ
{n1−χ − (r + 1)1−χ}

)
and it follows from (60), the fact that the eigenvectors of A span Rd and the principle
of uniform boundedness that∥∥∥∥∥

n−1∏
l=r+1

(
(1 + ηl)I −

A

lχ

)∥∥∥∥∥ r,n
≪ e−

λmin
2−2χ {n1−χ−(r+1)1−χ}.(60)

It follows by (31), (59) and (60) that

n−1∑
r=2

(r − 1)χ∥Fr−1,n − Fr,n∥
n
≪

n−1∑
r=2

1

rχ
e−

λmin
2−2χ {n1−χ−(r+1)1−χ}

n
≪ e−

λmin
2−2χ n1−χ

∫ n

2

1

tχ
e

λmin
2−2χ t1−χ

dt

n
≪ 1 ∀n = 3, 4, ...(61)
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Next,

n−1∑
j=1

Fj,nzj =

n−1∑
j=1

Fn−1,nzj +

n−1∑
j=1

 n−1∑
r=j+1

Fr−1,n − Fr,n

 zj and

∣∣∣∣∣∣
n−1∑
j=1

n−1∑
r=j+1

(Fr−1,n − Fr,n)zj

∣∣∣∣∣∣ ≤
n−1∑
r=2

∥Fr−1,n − Fr,n∥

∣∣∣∣∣∣
r−1∑
j=1

zj

∣∣∣∣∣∣ .
Therefore, by assumption, (31), (61) and Toeplitz’ lemma with xr = 1

(r−1)χ |
∑r−1

j=1 zj |
and an,r = (r − 1)χ∥Fr−1,n − Fr,n∥ we have:∣∣∣∣∣∣

n−1∑
j=1

Fj,nzj

∣∣∣∣∣∣ ≤ ∥Fn−1,n∥

∣∣∣∣∣∣
n−1∑
j=1

zj

∣∣∣∣∣∣+
∣∣∣∣∣∣
n−1∑
j=1

n−1∑
r=j+1

(Fr−1,n − Fr,n)zj

∣∣∣∣∣∣
≤ 1

(n− 1)χ

∣∣∣∣∣∣
n−1∑
j=1

zj

∣∣∣∣∣∣+
n−1∑
r=2

∥Fr−1,n − Fr,n∥

∣∣∣∣∣∣
r−1∑
j=1

zj

∣∣∣∣∣∣→ 0.(62)

as n → ∞.Turning to the second limit in ii), we have by (31) and (60) that

n−1∑
j=1

∥F̄j,n∥
n
≪

n−1∑
j=1

j−χe−
λmin
2−2χ {n1−χ−(j+1)1−χ}jχ−θ.(63)

However,

n−1∑
j=1

1

jχ
e−

λmin
2−2χ {n1−χ−(j+1)1−χ} n

≪ e−
λmin
2−2χ n1−χ

∫ n

1

1

tχ
e

λmin
2−2χ t1−χ

dt

n
≪ 1(64)

for all n so the second limit in ii) follows by the Toeplitz lemma.

iii) Since 1
lχ = 1

nχ
k
+

l−1∑
r=nk

(
1

(r+1)χ − 1
rχ

)
∀ l ∈ Ik, one has that

∥∥∥∥∥∑
l∈Ik

Yl

lχ

∥∥∥∥∥ ≤ 1

nχ
k

∥∥∥∥∥∑
l∈Ik

Yl

∥∥∥∥∥+
∥∥∥∥∥∥∥
∑
r<l

r,l∈Ik

(
1

(r + 1)χ
− 1

rχ

)
Yl

∥∥∥∥∥∥∥ .
Hence, by Taylor’s theorem∥∥∥∥∥∑

l∈Ik

Yl

lχ

∥∥∥∥∥ ≤ 1

nχ
k

∥∥∥∥∥∥
∑

l<nk+1

Yl

∥∥∥∥∥∥+
∥∥∥∥∥∑
l<nk

Yl

∥∥∥∥∥


+

nk+1−2∑
r=nk

rχ − (r + 1)χ

rχ(r + 1)χ

∥∥∥∥∥∥
∑

l<nk+1

Yl −
∑
l≤r

Yl

∥∥∥∥∥∥
≤ 1

nχ
k

∥∥∥∥∥∥
∑

l<nk+1

Yl

∥∥∥∥∥∥+
∥∥∥∥∥∑
l<nk

Yl

∥∥∥∥∥


+
∑
r∈Ik

χ

rχ+1

∥∥∥∥∥∥
∑

l<nk+1

Yl

∥∥∥∥∥∥+
∥∥∥∥∥∥
∑
l≤r

Yl

∥∥∥∥∥∥
 ,(65)
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where the summations all start from l = 1 and stop at l = nk − 1, r or nk+1 − 1.
Furthermore, by the hypothesis and (33) we have that

lim
k→∞

max
r∈Ik

1

rχ

∥∥∥∥∥∥
∑

l<nk+1

Yl

∥∥∥∥∥∥ = 0(66)

and the first two terms on the RHS of (65) go to zero. Moreover, by (33)∑
r∈Ik

1

r
≤ log

(
nk+1 − 1

nk − 1

)

= log

(
⌊(a(k + 1))

1
1−χ ⌋ − 1

⌊(ak)
1

1−χ ⌋ − 1

)
→ 0 as k → ∞(67)

due to the fact that

1 ≤ ⌊(a(k + 1))
1

1−χ ⌋ − 1

⌊(ak)
1

1−χ ⌋ − 1
≤ (a(k + 1))

1
1−χ

(ak)
1

1−χ − 2
=

(k+1
k )

1
1−χ

1− ( 2
ak )

1
1−χ

→ 1 as k → ∞.

In addition, by assumption, (66) and (67)

∑
r∈Ik

χ

rχ+1

∥∥∥∥∥∥
∑

l<nk+1

Yl

∥∥∥∥∥∥ k
≪
∑
r∈Ik

1

r

1

nχ
k

∥∥∥∥∥∥
∑

l<nk+1

Yl

∥∥∥∥∥∥→ 0 as k → ∞

and

∑
r∈Ik

χ

rχ+1

∥∥∥∥∥∥
∑
l≤r

Yl

∥∥∥∥∥∥ ≤
∑
r∈Ik

χ

r

1

rχ

∥∥∥∥∥∥
∑
l≤r

Yl

∥∥∥∥∥∥→ 0 as k → ∞

Hence, the last term on the RHS of (65) goes to zero too.
iv) By Lemma 13, the fact that ∥B∥ ≤||| B |||≤

√
d∥B∥ for a matrix with rank d, iii)

and (38) we have

∑
l∈Ik

∥∥∥∥∥ Âl

lχ

∥∥∥∥∥ ≤
∑
l∈Ik

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ Âl

lχ

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ √

d

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
l∈Ik

Âl

lχ

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ d

∥∥∥∥∥∑
l∈Ik

Âl

lχ

∥∥∥∥∥
≤ d

∥∥∥∥∥∑
l∈Ik

(Âl −A)

lχ

∥∥∥∥∥+ d∥A∥
∑
l∈Ik

1

lχ

≤ d

∥∥∥∥∥∑
l∈Ik

Yl

lχ

∥∥∥∥∥+ d∥A∥
∑
l∈Ik

1

lχ
k
≪ 1 for k = 0, 1, 2, ...(68)

Moreover, by (39)
∑
l∈Ik

ηl ≤ η̄
∑
l∈Ik

1

lθ
→ 0 as k → ∞.

v) This follows by iv) and the fact that

∏
l∈Ik

(
1 +

∥Âl∥
lχ

+ ηl

)
≤ exp

(∑
l∈Ik

∥Âl∥
lχ

+ ηl

)
k
≪ 1, ∀ k = 0, 1, ... �(69)
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The following lemma is taken from Kouritzin [21].
Lemma 13. Suppose m is a positive integer and {Mk, k = 1, 2, 3, ...} is a sequence

of symmetric, positive semidefinite Rm×m-matrices. Then, it follows that

j∑
k=1

||| Mk |||≤
√
m

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

j∑
k=1

Mk

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ , ∀j = 1, 2, 3, ...
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